講座主題:Error estimates of EDG-HDG methods for the Stokes equations with Dirac measures
主講人:冷海濤
工作單位:華南師范大學(xué)
活動(dòng)時(shí)間:2021年4月22日 10:00-11:00
講座地點(diǎn):數(shù)學(xué)學(xué)院小會(huì)議室(303室)
主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院
內(nèi)容摘要:
Abstract: In this talk, we present and analyze the hybridized, embedded-hybridized and embedded discontinuous Galerkin methods for the Stokes equations with Dirac measures. The velocity, the velocity traces and the pressure traces are approximated by polynomials of degree
, and the pressure is discretized by polynomials of degree
. An attractive property, named divergence-free, is satisfied by these methods for the velocity field. Moreover, the velocity fields for hybridized and embedded-hybridized discontinuous Galerkin methods are H(div)-conforming, which means that a priori error estimates for the velocity do not depend on the pressure. Using duality argument and Oswald interpolation, a priori and a posteriori error estimates are obtained for the velocity in
-norm, and a posteriori error estimates for the velocity in in
-seminorm and the pressure in-norm are also derived. Finally, several numerical examples are provided to validate the theoretical analysis and show the performance of the obtained a posteriori error estimators.
主講人介紹:
冷海濤,博士畢業(yè)于華南師范大學(xué),,并于2018-2019年在香港中文大學(xué)做博士后,,現(xiàn)為華南師范大學(xué)的副研究員。主要從事最優(yōu)控制問(wèn)題,、對(duì)流擴(kuò)散問(wèn)題,、分?jǐn)?shù)階等領(lǐng)域的快速算法研究。目前已在J. Sci. Comput., Appl. Math. Lett., Comput. Math. Appl等計(jì)算數(shù)學(xué)知名雜志發(fā)表論文十余篇,。