model麻豆传媒视频在线播放|久久久精品亚洲金va费免|91国产高清视频|在线观看隔壁的女孩|麻豆av永久地址久久精品|超级视频日韩国产|自拍偷拍 第十页|91黑色在线视频|谁知道麻豆传媒网站|精品亚洲国产91在线,水蜜桃影像果冰传媒,麻豆女传媒演员有哪些人,国产传媒排行

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

學(xué)術(shù)報告-Perfect codes and regular sets in Cayley graphs
作者:     供圖:     供圖:     日期:2021-11-17     來源:    

講座主題:Perfect codes and regular sets in Cayley graphs

專家姓名:周三明

工作單位:墨爾本大學(xué)

講座時間:2021年11月22,24,29日及12月1日 14:00-15:00

講座地點(diǎn):Zoom ID:990698957 Password: 523461

主辦單位:煙臺大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

Let G = (V, E) be a graph and t a positive integer. A perfect t-code in G is a subset C of V such that every vertex of G is at distance no more than t to exactly one vertex in C. Perfect t-codes in the Hamming graph H(n, q) are precisely q-ary perfect t-codes of length n in the classical setting, and those in the Cartesian product of a cycle of length q with itself n times are precisely q-ary perfect t-codes of length n under the Lee metric. Thus, perfect codes in Cayley graphs are a generalization of perfect codes under the Hamming or Lee metric. Moreover, perfect 1-codes in Cayley graphs are closely related to tilings of the underlying groups. Furthermore, perfect 1-codes can also be viewed as regular sets of a particular form. In this series of talks, I will review selected results on perfect codes and regular sets in Cayley graphs, with an emphasis on perfect 1-codes.

主講人介紹:

周三明教授是組合數(shù)學(xué)界的國際權(quán)威,現(xiàn)就職墨爾本大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院(北美體系的講座教授Chair Professor),,澳大利亞組合數(shù)學(xué)會主席,。目前擔(dān)任四個國際學(xué)術(shù)雜志編委,從2018年開始任澳大利亞組合雜志主編,。由于數(shù)學(xué)研究上的突出成就,,于2003年獲國際組合數(shù)學(xué)及其應(yīng)用學(xué)會Kirkman獎,2012-2015年獲澳大利亞研究委員會“未來研究員”(Future Fellowship)稱號,,是該計劃資助的少數(shù)幾位組合數(shù)學(xué)家之一,。四次獲得澳大利亞研究委員會資助,資助總額達(dá)127萬澳元,。研究領(lǐng)域包括代數(shù)圖論及其應(yīng)用,、隨機(jī)圖過程、結(jié)構(gòu)圖論,、組合優(yōu)化等,,是國際上少數(shù)在代數(shù)圖論和隨機(jī)圖過程這兩個困難領(lǐng)域都有出色工作的組合數(shù)學(xué)家。在組合數(shù)學(xué)界所有重要期刊以及一些知名的綜合數(shù)學(xué)雜志發(fā)表近百篇學(xué)術(shù)論文,,與19個國家50多位數(shù)學(xué)家從事過合作研究,。