講座主題:Diffraction by periodic curves of Neumann kind
專(zhuān)家姓名:胡廣輝
工作單位:南開(kāi)大學(xué)數(shù)學(xué)科學(xué)學(xué)院
講座時(shí)間:2022年11月25日 10:30-11:30
講座地點(diǎn):騰訊會(huì)議:312-899-144
主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院
內(nèi)容摘要:
The Rayleigh expansion radiation condition (which was originally proposed by Lord Rayleigh in 1907) has been widely used in the literature concerning the mathematical analysis and numerical approximation of wave scattering in periodic structures. With the Fredholm theory, it is also well known that the forward scattering model is well-posed for all incident frequencies excluding a discrete set with the only accumulating point at infinity. However, the Rayleigh expansion radiation condition does not always lead to uniqueness (although existence can always be justified via variational argument), because of the existence of guided/Floquet wave modes to the homogeneous problem, which exponentially decay in the direction orthogonal to the periodicity direction. In this talk, I will propose a new radiation condition to ensure uniqueness of forward diffraction problem from periodic curves of Neumann kind. This new condition is derived from a singular perturbation argument based on the limiting absorption principle.
主講人介紹:
胡廣輝,現(xiàn)任南開(kāi)大學(xué)數(shù)學(xué)科學(xué)學(xué)院科學(xué)工程與計(jì)算系教授。2009年獲中國(guó)科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院博士學(xué)位。2009至2016年在德國(guó)萊布尼茨協(xié)會(huì)維爾斯特拉斯研究所做博士后工作,2012至2015年獨(dú)立主持德國(guó)研究協(xié)會(huì)科研項(xiàng)目。2016年3月份入選國(guó)家海外高層次青年人才計(jì)劃,2016.09-2020.05就工作于北京計(jì)算科學(xué)研究中心,2020年3月份入選德國(guó)洪堡資深學(xué)者訪(fǎng)問(wèn)項(xiàng)目。胡廣輝博士主要從事波方程的數(shù)學(xué)理論研究和偏微分方程反問(wèn)題及其計(jì)算方法研究,目前已在ARMA,M3AS,JCP,JDE,JMPA,IP,SIAM系列雜志發(fā)表學(xué)術(shù)論文70余篇。