model麻豆传媒视频在线播放|久久久精品亚洲金va费免|91国产高清视频|在线观看隔壁的女孩|麻豆av永久地址久久精品|超级视频日韩国产|自拍偷拍 第十页|91黑色在线视频|谁知道麻豆传媒网站|精品亚洲国产91在线,水蜜桃影像果冰传媒,麻豆女传媒演员有哪些人,国产传媒排行

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇:New bounds on Majority coloring of digraph
作者:     供圖:     供圖:     日期:2023-06-23     來源:    

講座主題:New bounds on Majority coloring of digraph

專家姓名:蔡建生

工作單位:濰坊學(xué)院

講座時(shí)間:2023年6月24日 15:30-16:30

講座地點(diǎn):數(shù)學(xué)院大會(huì)議室

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

A majority k-coloring of a digraph D with k colors is an assignment c:V(D)→ {1,2,……,k}, such that for every v, we have c(w)=c(v) for at most half of all out-neighbors w of v. Kreutzer et al. conjectured that every digraph admits a majority 3-coloring. For a natural number k, a 1/k-majority coloring of a digraph is a coloring of the vertices such that each vertex receives the same color as at most a 1/k proportion of its out-neighbours. Girao et al. conjectured that every digraph admits a 1/k -majority (2k-1)-coloring. In this paper, we prove that Kreutzer's conjecture is true for digraphs under some conditions, which improves Kreutzer's results. Moreover, we discuss the majority 3-coloring of random digraph with some conditions.

主講人介紹:

蔡建生,理學(xué)博士,,現(xiàn)任濰坊學(xué)院數(shù)學(xué)與信息科學(xué)學(xué)院教授,、中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)圖論組合及應(yīng)用專業(yè)委員會(huì)常務(wù)委員,、中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)信息和通訊領(lǐng)域的數(shù)學(xué)專業(yè)委員會(huì)委員,、山東數(shù)學(xué)會(huì)高等數(shù)學(xué)專業(yè)委員會(huì)常務(wù)理事,、山東師范大學(xué)和濟(jì)南大學(xué)碩士生導(dǎo)師,。,,發(fā)表相關(guān)學(xué)術(shù)論文60余篇,,出版學(xué)術(shù)專著1部,,2016年以來主持國(guó)家自然科學(xué)基金面上項(xiàng)目2項(xiàng),主持山東省自然科學(xué)基金面上項(xiàng)目2項(xiàng),。主持完成的研究成果獲山東省自然科學(xué)三等獎(jiǎng)1項(xiàng),、山東省高校優(yōu)秀科研成果獎(jiǎng)2項(xiàng),2021年獲得濰坊市五一勞動(dòng)獎(jiǎng)?wù)隆?/p>