model麻豆传媒视频在线播放|久久久精品亚洲金va费免|91国产高清视频|在线观看隔壁的女孩|麻豆av永久地址久久精品|超级视频日韩国产|自拍偷拍 第十页|91黑色在线视频|谁知道麻豆传媒网站|精品亚洲国产91在线,水蜜桃影像果冰传媒,麻豆女传媒演员有哪些人,国产传媒排行

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇:Optimal error estimate for multiscale finite element method with periodic media
作者:     供圖:     供圖:     日期:2023-10-18     來源:    

講座主題:Optimal error estimate for multiscale finite element method with periodic media

專家姓名:明平兵

工作單位:中國科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院

講座時(shí)間:2023年10月20日 16:00-18:00

講座地點(diǎn):數(shù)學(xué)與信息科學(xué)學(xué)院341

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

We derive the optimal energy error estimate for multiscale finite element method with oversampling technique applying to elliptic systems with rapidly oscillating periodic coefficients, which are assumed to be bounded and measurable. Such media admits rough microstructures. As a by-product of the energy estimate, we derive the rate of convergence in L^{d/(d-1)} norm. We shall also discuss how to extend the results to the locally periodic media.

主講人介紹:

明平兵,,國家杰出青年基金獲得者,,中國科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院研究員,,科學(xué)與工程計(jì)算國家重點(diǎn)實(shí)驗(yàn)室副主任,,主要從事固體多尺度建模,、模擬及多尺度算法的研究,。他預(yù)測(cè)了石墨烯的理想強(qiáng)度并在Cauchy-Born法則的數(shù)學(xué)理論,、擬連續(xù)體方法的穩(wěn)定性方面有較為系統(tǒng)的工作,。他在JAMS, CPAM, ARMA, PRB, JMPS,,Acta Materialia,SINUM, Math. Comp. Numer. Math等國際著名學(xué)術(shù)期刊上發(fā)表學(xué)術(shù)論文六十余篇,。他曾應(yīng)邀在SCADE2009,The SIAM Mathematics Aspects of Materials Science 2016等會(huì)議上作大會(huì)報(bào)告,。明平兵于2014年獲得國家杰出青年基金,,并于2019年入選第四批國家級(jí)高層次人才。