講座主題:A New Multi-Domain Spectral Method for Korteweg-de Vries Equation on The Whole Line
專家姓名:王天軍
工作單位:河南科技大學(xué)
講座時(shí)間:2023年11月7日 16:00-17:00
講座地點(diǎn):數(shù)學(xué)學(xué)院大會(huì)議室
主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院
內(nèi)容摘要:
In this talk, some composite generalized Laguerre-Legendre quasi-orthogonal approximation results on the whole line are established. A novel multi-domain composite generalized Laguerre-Legendre spectral scheme is provided for the Korteweg-de Vries equation on the whole line. The scheme features mobile common boundaries of the adjacent subdomains, which better fits the soliton wave governed by the Korteweg-de Vries equation. Convergence of the proposed scheme is proved. Numerical results show the efficiency of the scheme and coincide well with theoretical analysis. Also, we apply the composite generalized Laguerre-Legendre spectral method to a nonlinear Fokker-Planck equation whose solutions may decay slowly as |x| → ∞. The problem is a coupling of hyperbolic and parabolic equations with the nonlinear term W2(v, t) and the quasilinear term W(v, t)?xW(v, t). In this case, our proposed method continues to work well, but the Fourier spectral method suffers.
主講人介紹:
王天軍,,河南科技大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院教授,,博士生導(dǎo)師,,計(jì)算數(shù)學(xué)學(xué)科帶頭人; 河南省教育廳學(xué)術(shù)技術(shù)帶頭人; 長(zhǎng)期從事偏微分方程數(shù)值方法譜方法研究工作,,在《Math. Comp.)、《Adv. Comp. Math.》,、《J. Sci. Comput.),、《Appl. Numer Math.》以及《Comm. Comp. Phys.》等國(guó)際著名學(xué)術(shù)期刊上發(fā)表論文四十多篇。博士論文《無界區(qū)域和外部問題的區(qū)域分解譜方法及其應(yīng)用》獲2009年全國(guó)百篇優(yōu)秀博士論文提名論文,;博士論文獲上海市優(yōu)秀博士論文獎(jiǎng),。獲2010年河南省第10屆自然科學(xué)優(yōu)秀學(xué)術(shù)論文二等獎(jiǎng)。先后主持國(guó)家自然科學(xué)基金面上項(xiàng)目2項(xiàng),。