講座主題:A high-order shifted boundary virtual element method for Poisson equations on 2D curved domains
專家姓名:汪艷秋
工作單位:南京師范大學(xué)
講座時(shí)間:2024年04月20日10:50-11:20
講座地點(diǎn):數(shù)學(xué)與信息科學(xué)學(xué)院341
主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院
內(nèi)容摘要:
We consider a high-order Virtual Element Method (VEM) for Poisson problems with non-homogeneous Dirichlet boundary condition on 2D domains with curved boundary. The scheme is designed on unfitted polygonal meshes. It borrows the idea of the Shifted Boundary Method (SBM) proposed by Main and Scovazzi (2018) for treating the curved boundary. We prove the stability and the optimal error estimate in energy norm for the proposed method. For the L2 norm, although suboptimal error estimate is proved theoretically, numerical results appear to be optimal. Supporting numerical results are presented.
主講人介紹:
汪艷秋,,南京師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院院長(zhǎng),、教授,博士生導(dǎo)師,。2004年于美國(guó)德克薩斯A&M大學(xué)獲得博士學(xué)位,,2016年起在南京師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院工作,,曾入選國(guó)家青年人才計(jì)劃。研究方向?yàn)橛邢拊椒?,近期主要關(guān)注多邊形與多面體網(wǎng)格上數(shù)值離散方法的構(gòu)造,、分析、與應(yīng)用,。