講座主題:Decoupling the coupled Navier-Stokes and Darcy equations
專(zhuān)家姓名:何曉明
工作單位:Missouri University of Science and Technology
講座時(shí)間:2017年6月5日10:30
講座地點(diǎn):數(shù)學(xué)院大會(huì)議室
主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院
內(nèi)容摘要:
The Navier-Stokes equation coupled with the Darcy equation through interface conditions has attracted scientists’ attention due to its wide range of applications and significant difficulty in the nonlinearity and interface conditions. This presentation discusses a multi-physics domain decomposition method for decoupling the coupled Navier-Stokes-Darcy system with the Beavers-Joseph interface condition. The wellposedness of this system is first showed by using a branch of singular solutions and the existing theoretical results on the Beavers-Joseph interface condition. Then Robin boundary conditions on the interface are constructed based on the physical interface conditions to decouple the Navier-Stokes and Darcy parts of the system. A parallel iterative domain decomposition method is developed according to these Robin boundary conditions and then analyzed for the convergence. Numerical examples are presented to illustrate the features of this method and verify the theoretical results.
主講人介紹:
何曉明,美國(guó)密蘇里科學(xué)技術(shù)大學(xué)副教授。2002年畢業(yè)于四川大學(xué)數(shù)學(xué)系獲學(xué)士學(xué)位,,2009年在弗吉尼亞理工大學(xué)獲博士學(xué)位,2009年至2010年在佛羅里達(dá)州立大學(xué)作博士后,。2010年至2016年在美國(guó)密蘇里科學(xué)技術(shù)大學(xué)任助理教授,2016年晉升為副教授,,并獲終身教職,。擔(dān)任計(jì)算數(shù)學(xué)領(lǐng)域國(guó)際期刊International Journal of Numerical Analysis & Modeling的編委,擔(dān)任多個(gè)著名國(guó)際學(xué)術(shù)期刊特刊的Guest editor,,擔(dān)任SIAM Central States Section主席和前兩屆年會(huì)的組織委員會(huì)主席。何曉明教授主要的研究領(lǐng)域是計(jì)算科學(xué)與工程,。研究問(wèn)題主要包括界面問(wèn)題,,計(jì)算流體動(dòng)力學(xué),隨機(jī)偏微分方程,,非線性偏微分方程,,反饋控制問(wèn)題,計(jì)算電磁學(xué)等,。主要研究有限元方法,,區(qū)域分解方法等。 他將計(jì)算數(shù)學(xué)與實(shí)際工程應(yīng)用問(wèn)題結(jié)合起來(lái),,在科學(xué)計(jì)算和應(yīng)用領(lǐng)域做了大量的工作,在SIAM Journal on Scientific Computing,,Journal of Computational Physics,Mathematics of Computation,,Numerische Mathematik,,IEEE Transactions on Plasma Science等一流雜志發(fā)表論文30多篇。