講座主題:Ribbon graphs, partial dual and Eulerian partial duals
專家姓名:金賢安
工作單位:廈門大學(xué)
講座時(shí)間:2017年7月6日10:00
講座地點(diǎn):數(shù)學(xué)院大會議室
主辦單位:煙臺大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院
內(nèi)容摘要:
In this talk, I shall first give several (equivalent) definitions of ribbon graphs and their partial duals, a generalization of geometrical dual of cellularly embedded graphs from the set of edge of the graph to all subsets of the set of edges of the graph. We then talk about a little background or history as far as I know. A ribbon graph with m edges has 2^m (not necessarily distinct) partial duals. Huggett and Moffatt characterized bipartite partial duals of a plane graph (i.e. among all partial duals, which are bipartite?). They posed an open problem for characterizing Eulerian partial duals of a plane graph. We solve it and further generalize it from plane graphs to any (orientatble) ribbon graphs. This is a joint work with Metrose Metsidik and Qingying Deng.
主講人介紹:
廈門大學(xué)數(shù)學(xué)科學(xué)學(xué)院教授,,博士生導(dǎo)師,,數(shù)學(xué)與應(yīng)用數(shù)學(xué)系主任。主要從事圖論,、組合紐結(jié)論及其在統(tǒng)計(jì)物理,、化學(xué)和生命科學(xué)中的應(yīng)用的研究工作。在Proceedings of the American Mathematical Society,、Advances in Applied Mathematics,、 Journal of Knot Theory and its Ramifications,、The Electronic Journal of Combinatorics,、Discrete Applied Mathematics等雜志發(fā)表論文40余篇。曾應(yīng)邀赴新加坡,,美國,,意大利,泰國,,中國臺灣,、印度尼西亞、澳大利亞等國家或地區(qū)訪問或參加學(xué)術(shù)會議?,F(xiàn)主持國家自然科學(xué)基金面上項(xiàng)目1項(xiàng),,曾主持完成國家自然科學(xué)基金重點(diǎn)項(xiàng)目子課題、面上項(xiàng)目以及青年基金項(xiàng)目各1項(xiàng),。