model麻豆传媒视频在线播放|久久久精品亚洲金va费免|91国产高清视频|在线观看隔壁的女孩|麻豆av永久地址久久精品|超级视频日韩国产|自拍偷拍 第十页|91黑色在线视频|谁知道麻豆传媒网站|精品亚洲国产91在线,水蜜桃影像果冰传媒,麻豆女传媒演员有哪些人,国产传媒排行

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

學(xué)術(shù)預(yù)告-Machine Learning and Transport Simulations for Groundwater Anomaly Detection
作者:     日期:2019-05-22     來源:    

講座主題:Machine Learning and Transport Simulations for Groundwater Anomaly Detection

主講人:Jiangguo Liu

工作單位:Colorado State University

講座時間:2019年5月29日10點30

講座地點:數(shù)學(xué)院341

主辦單位:煙臺大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

In this talk, we present studies on models and algorithms for groundwater anomaly detection. Specifically, conductivity along with four other surrogates are used for identifying anomaly in groundwater, the one-class support vector machine (SVM) technique is utilized for model training, and real data from “Colorado Water Watch” is used for testing the models and algorithms. Design of code modules in Python will be briefly discussed. Since groundwater contamination rarely happens in reality, we also use data from numerical simulations of flow and transport in porous media to test the anomaly detection code modules. This is a joint work with Ken Carlson, Jianli Gu, and Huishu Li at Colorado State University.

主講人介紹:

Jiangguo (James) Liu劉江國,,美國科羅拉多州立大學(xué)數(shù)學(xué)系教授,,博士生導(dǎo)師。曾任美國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會中部地區(qū)分會主席,現(xiàn)任 Journal of Computational and Applied Mathematics 雜志編輯,。主要研究興趣為數(shù)值分析,,科學(xué)計算,,及生物數(shù)學(xué),。已在 SIAM Journal on Numerical Analysis, SIAM Journal on Scientific Computing, Journal of Computational Physics 等雜志上發(fā)表論文40多篇。所主持研究項目受美國國家自然科學(xué)基金資助,。