model麻豆传媒视频在线播放|久久久精品亚洲金va费免|91国产高清视频|在线观看隔壁的女孩|麻豆av永久地址久久精品|超级视频日韩国产|自拍偷拍 第十页|91黑色在线视频|谁知道麻豆传媒网站|精品亚洲国产91在线,水蜜桃影像果冰传媒,麻豆女传媒演员有哪些人,国产传媒排行

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

學(xué)術(shù)預(yù)告—Inverse random source problems for time-harmonic acoustic and elastic waves
作者:     日期:2019-12-24     來源:    

講座主題:Inverse random source problems for time-harmonic acoustic and elastic waves

主講人:李建樑

工作單位:長沙理工大學(xué)

講座時(shí)間:2019年12月26日(周四)下午4:30--5:30

講座地點(diǎn):數(shù)學(xué)院大會(huì)議室341

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

This talk concerns the random source problems for the time-harmonic acoustic and elastic wave equations in two and three dimensions. The goal is to determine the compactly supported external force from the radiated wave field measured in a domain away from the source region. The source is assumed to be a microlocally isotropic generalized Gaussian random function such that its covariance operator is a classical pseudo-differential operator. Given such a distributional source, the direct problem is shown to have a unique solution by using an integral equation approach and the Sobolev embedding theorem. For the inverse problem, we demonstrate that the amplitude of the scattering field averaged over the frequency band, obtained from a single realization of the random source, determines uniquely the principle symbol of the covariance operator. The analysis employs asymptotic expansions of the Green functions and microlocal analysis of the Fourier integral operators associated with the Helmholtz and Navier equations.

主講人介紹:

李建樑,,中國科學(xué)院大學(xué)理學(xué)博士。2014年7月起任長沙理工大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院講師,。2017-2018年受國家留學(xué)基金委資助赴美國普渡大學(xué)數(shù)學(xué)系訪問一年,。主要研究領(lǐng)域?yàn)榉瓷⑸鋯栴}的理論與數(shù)值方法、隨機(jī)反散射問題的理論研究,。主持國家自然科學(xué)基金青年項(xiàng)目一項(xiàng),,湖南省教育廳一般項(xiàng)目一項(xiàng)。在《Inverse Problems in Science and Engineering》,、《Applicable Analysis》,、《Computers and Mathematics with applications》、《SIAM Journal on Imaging Sciences》,、《SIAM Journal on Mathematical Analysis》發(fā)表論文六篇,。