model麻豆传媒视频在线播放|久久久精品亚洲金va费免|91国产高清视频|在线观看隔壁的女孩|麻豆av永久地址久久精品|超级视频日韩国产|自拍偷拍 第十页|91黑色在线视频|谁知道麻豆传媒网站|精品亚洲国产91在线,水蜜桃影像果冰传媒,麻豆女传媒演员有哪些人,国产传媒排行

學術(shù)預告 首頁  >  學術(shù)科研  >  學術(shù)預告  >  正文

學術(shù)報告-Existence of non-Cayley Haar graphs
作者:     供圖:     供圖:     日期:2020-12-11     來源:    

講座主題:Existence of non-Cayley Haar graphs

主講人: 楊大偉

工作單位:北京郵電大學

活動時間:2020年12月13日 14:50-15:40

講座地點:騰訊會議,會議ID:850 153 808

主辦單位:煙臺大學數(shù)學與信息科學學院

內(nèi)容摘要:

A Cayley graph of a group H is a finite simple graphΓsuch that its automorphism group Aut(Γ) contains a subgroup isomorphic to H acting regularly on V(Γ), while a Haar graph of H is a finite simple bipartite graphΣsuch that Aut(Σ) contains a subgroup isomorphic to H acting semiregularly on V(Σ) and the H-orbits are equal to the partite sets ofΣ. It is well-known that every Haar graph of finite abelian groups is a Cayley graph. In this paper, we prove that every finite non-abelian group admits a non-Cayley Haar graph except the dihedral groups D6, D8, D10, the quaternion group Q8 and the group Q8×Z2. This answers an open problem proposed by Estelyi and Pisanski in 2016. This is joint work with Yan-Quan Feng, Istvan Kovacs and Jie Wang.

主講人介紹:

楊大偉,理學博士,北京郵電大學講師。研究方向為代數(shù)圖論、圖論與網(wǎng)絡(luò),主要研究內(nèi)容為圖與網(wǎng)絡(luò)的對稱性,網(wǎng)絡(luò)的嵌入與容錯性分析等。目前已在European J. Combin., J. Algebraic Combin., Inform. Sci.等國際期刊發(fā)表十余篇學術(shù)論文,主持或參與多項省部級以上科研項目。