講座主題:Existence of non-Cayley Haar graphs
主講人: 楊大偉
工作單位:北京郵電大學(xué)
活動(dòng)時(shí)間:2020年12月13日 14:50-15:40
講座地點(diǎn):騰訊會(huì)議,,會(huì)議ID:850 153 808
主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院
內(nèi)容摘要:
A Cayley graph of a group H is a finite simple graphΓsuch that its automorphism group Aut(Γ) contains a subgroup isomorphic to H acting regularly on V(Γ), while a Haar graph of H is a finite simple bipartite graphΣsuch that Aut(Σ) contains a subgroup isomorphic to H acting semiregularly on V(Σ) and the H-orbits are equal to the partite sets ofΣ. It is well-known that every Haar graph of finite abelian groups is a Cayley graph. In this paper, we prove that every finite non-abelian group admits a non-Cayley Haar graph except the dihedral groups D6, D8, D10, the quaternion group Q8 and the group Q8×Z2. This answers an open problem proposed by Estelyi and Pisanski in 2016. This is joint work with Yan-Quan Feng, Istvan Kovacs and Jie Wang.
主講人介紹:
楊大偉,,理學(xué)博士,,北京郵電大學(xué)講師,。研究方向?yàn)榇鷶?shù)圖論、圖論與網(wǎng)絡(luò),,主要研究?jī)?nèi)容為圖與網(wǎng)絡(luò)的對(duì)稱性,,網(wǎng)絡(luò)的嵌入與容錯(cuò)性分析等。目前已在European J. Combin., J. Algebraic Combin., Inform. Sci.等國(guó)際期刊發(fā)表十余篇學(xué)術(shù)論文,主持或參與多項(xiàng)省部級(jí)以上科研項(xiàng)目,。