講座主題:Cycle Traversability of Graphs
主講人: 葉東
工作單位:美國(guó)中田納西州立大學(xué)
講座時(shí)間: 2020年8月23日10:00
講座地點(diǎn):騰訊會(huì)議898 645 687
主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院
內(nèi)容摘要:
A graph G is k-cyclable if for any give k vertices, G has a cycle through these given k vertices. A graph is Hamiltonian if it is n-cyclable where n is the number of vertices of G. A classic result of Dirac says that every k-connected graph is k-cyclable. The result of Dirac is sharp in the sense that there are k-connected graphs which are not (k+1)-cyclable. As a generalization of the concept k-cyclability, a graph G is (k,l)-cyclable if for any give k+l vertices, the graph G has a cycle through any k vertices among these k+l vertices but avoiding the rest l vertices. A k-connected graph is (x,y)-cyclable if x+y=k and x>1. In this talk, we will focus on cyclabilities of claw-free graphs and polyhedral maps and some open problems in this area. This talk is based on joint work with Gyori, Plummer and Zha.
主講人人介紹:
葉東,中田納西州立大學(xué)數(shù)學(xué)科學(xué)系和計(jì)算科學(xué)中心副教授、博士生導(dǎo)師。2012年于西弗吉尼亞大學(xué)數(shù)學(xué)系獲博士學(xué)位,師從張存銓教授。主要在圖論、組合以及相關(guān)領(lǐng)域從事研究工作,和合作者一起解決了圖的逆、圖的嵌入、以及匹配方面的多個(gè)公開問題和猜想。目前在Combinatorica,Journal of Combinatorial Theory Series B,SIAM Journal on Discrete Mathematics等刊物上發(fā)表SCI論文40余篇,并且擔(dān)任國(guó)際學(xué)術(shù)期刊《Theory and Applications of Graphs》執(zhí)行編委,以及《Journal of Combinatoric,Information & System Sciences》編委。