講座主題:Game total domination
專家姓名:陸玫
工作單位:清華大學(xué)
講座時(shí)間:2017年10月15日11:00-12:00
講座地點(diǎn):數(shù)學(xué)學(xué)院340
主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院
內(nèi)容摘要:
Let G = (V, E) be a simple graph without isolated vertices. The total domination game, played on a graph G consists of two players called Dominator and Staller who take turns choosing a vertex from G. Each chosen vertex must totally dominate at least one vertex not totally dominated by the set of vertices previously chosen. The game ends when the set of vertices chosen is a total dominating set in G. Dominator’s objective is to minimize the number of vertices chosen, while Staller’s is to end the game with as many vertices chosen as possible. The game total domination number is the number of vertices chosen when Dominator starts the game and both players employ a strategy that achieves their objective. The Staller-start game total domination number is the number of vertices chosen when Staller starts the game and both players play optimally. In this talk, some results about the game total domination number and the Staller-start game total domination number will be given.
主講人介紹:
陸 玫,,1993年7月在中國科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院獲博士學(xué)位,,現(xiàn)為清華大學(xué)數(shù)學(xué)科學(xué)系教授,博士生導(dǎo)師,,主要從事運(yùn)籌學(xué),、圖論與組合優(yōu)化方面的研究,,在《Journal of Combinatorial Theory, Series B》、 《Journal of Graph Theory》,、 《Linear Algebra and Applications》,、《Discrete Applied Mathematics》、《Discrete Mathematics》,、《Journal of Combinatorial Optimization》等國際權(quán)威學(xué)術(shù)期刊發(fā)表SCI檢索論文60余篇?,F(xiàn)任清華大學(xué)數(shù)學(xué)科學(xué)系計(jì)算數(shù)學(xué)與運(yùn)籌學(xué)研究所所長,中國運(yùn)籌學(xué)會(huì)圖論組合分會(huì)副理事長,,中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)圖論組合及應(yīng)用專業(yè)委員會(huì)秘書長,,中國組合數(shù)學(xué)與圖論學(xué)會(huì)理事。