model麻豆传媒视频在线播放|久久久精品亚洲金va费免|91国产高清视频|在线观看隔壁的女孩|麻豆av永久地址久久精品|超级视频日韩国产|自拍偷拍 第十页|91黑色在线视频|谁知道麻豆传媒网站|精品亚洲国产91在线,水蜜桃影像果冰传媒,麻豆女传媒演员有哪些人,国产传媒排行

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

學(xué)術(shù)報告-Delay-dependent stability and hybrid-gain analysis of linear impulsive time-delay systems
作者:     供圖:     供圖:     日期:2020-11-03     來源:    

講座主題:Delay-dependent stability and hybrid-gain analysis of linear impulsive time-delay systems

主講人: 陳武華

工作單位:廣西大學(xué)

活動時間:2020年11月8日19:00-19:50

講座地點:騰訊會議會議ID:106 694 910

主辦單位:煙臺大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

In this talk, a new approach for analyzing delay-dependent stability and hybrid $L_2\times l_2$-gain performance of linear impulsive delay systems is presented. The new approach is inspired by the delay-partitioning method, the timer-dependent Lyapunov functional method, and the looped-functional method. In the delay-partitioning framework, a new type of timer-dependent Lyapunov functional is constructed, which depends on the partition on impulse intervals and also on impulse dynamics. Different from the previous discontinuous Lyapunov functionals, the introduced Lyapunov functional is continuous along the trajectories of the considered impulsive delay system. Consequently, two different problems of exponential stability and hybrid $L_2\times l_2$-gain performance are tackled by using the same class of Lyapunov functionals. It is shown that the positive definiteness of this Lyapunov functional inside impulse intervals is not necessary for proving exponential stability. By use of new integral inequalities based techniques, delay-dependent criteria for exponential stability and finite hybrid $L_2\times l_2$-gain are established in terms of linear matrix inequalities. Numerical examples are provided to illustrate the efficiency of the new approach.

主講人介紹:

廣西大學(xué)二級教授,、博士生導(dǎo)師,第九屆廣西青年科技獎獲得者,,先后入選2012年湖北省“楚天學(xué)者”計劃和2016年浙江省“錢江學(xué)者”特聘教授,,以及2014-2018年度”控制與系統(tǒng)工程“領(lǐng)域愛思唯爾中國高被引學(xué)者榜單。近年來,,主要從事脈沖系統(tǒng)、切換系統(tǒng)、奇異攝動系統(tǒng)穩(wěn)定與控制方面的研究,。在TAC、Automatica等重要期刊上發(fā)表SCI論文80余篇,。